Matroids over a ring
نویسندگان
چکیده
We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the ground set an R-module according to some axioms. When R is a field, we recover matroids. When R = Z, and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, respectively. More generally, whenever R is a Dedekind domain, we extend the usual properties and operations holding for matroids (e.g., duality), and we compute the Tutte-Grothendieck group of matroids over R. Résumé. Nous introduisons la notion de matroı̈de M sur un anneau commutatif R, qui assigne à chaque partie d’un ensemble E un R-module selon certains axiomes. Quand R est un corps, on retrouve les matroı̈des. Lorsque R = Z, et lorsque R est un anneau de valuation discrète, nous obtenons (structures qui contiennent toutes les données) respectivement des matroı̈des quasi-arithmétiques et des matroı̈des valués. En plus de généralité, quand R est un anneau de Dedekind, nous étendons les propriétés et operations habituelles pour les matroı̈des (par exemple, la dualité), et nous calculons le groupe de Tutte-Grothendieck des matroı̈des sur R.
منابع مشابه
Rees cones and monomial rings of matroids
Using linear algebra methods we study certain algebraic properties of monomial rings and matroids. Let I be a monomial ideal in a polynomial ring over an arbitrary field. If the Rees cone of I is quasi-ideal, we express the normalization of the Rees algebra of I in terms of an Ehrhart ring. We introduce the basis Rees cone of a matroid (or a polymatroid) and study their facets. Some application...
متن کاملThe intersection ring of matroids
We study a particular graded ring structure on the set of all loopfree matroids on a fixed labeled ground set, which occurs naturally in tropical geometry. The product is given by matroid intersection and the additive structure is defined by assigning to each matroid the indicator vector of its chains of flats. We show that this ring is generated in corank one, more precisely that any matroid c...
متن کاملHomological Properties of Orlik-solomon Algebras
The Orlik-Solomon algebra of a matroid can be considered as a quotient ring over the exterior algebra E . At first we study homological properties of E-modules as e.g. complexity, depth and regularity. In particular, we consider modules with linear injective resolutions. We apply our results to Orlik-Solomon algebras of matroids and give formulas for the complexity, depth and regularity of such...
متن کاملRees cones of matroids
Let I be a monomial ideal in a polynomial ring over a field k. If the Rees cone of I is quasi-ideal, we express the normalization of the Rees algebra of I in terms of an Ehrhart ring. We introduce the basis Rees cone of a matroid and study their facets. Then an application to Rees algebras is presented.
متن کاملWitt Rings and Matroids
The study of Witt rings of formally real fields in the algebraic theory of quadratic forms has led to a particularly good understanding of the finitely generated torsion free Witt rings. In this paper, we work primarily with a somewhat more general class of rings which can be completely characterized by (binary) matroids. The different types of standard constructions and invariants coming from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012